3.286 \(\int (7+5 x^2)^3 \sqrt {2+3 x^2+x^4} \, dx\)

Optimal. Leaf size=193 \[ \frac {275}{7} \left (x^4+3 x^2+2\right )^{3/2} x+\frac {1}{21} \left (757 x^2+2608\right ) \sqrt {x^4+3 x^2+2} x+\frac {577 \left (x^2+2\right ) x}{3 \sqrt {x^4+3 x^2+2}}+\frac {2945 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{21 \sqrt {x^4+3 x^2+2}}-\frac {577 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{3 \sqrt {x^4+3 x^2+2}}+\frac {125}{9} \left (x^4+3 x^2+2\right )^{3/2} x^3 \]

[Out]

275/7*x*(x^4+3*x^2+2)^(3/2)+125/9*x^3*(x^4+3*x^2+2)^(3/2)+577/3*x*(x^2+2)/(x^4+3*x^2+2)^(1/2)-577/3*(x^2+1)^(3
/2)*(1/(x^2+1))^(1/2)*EllipticE(x/(x^2+1)^(1/2),1/2*2^(1/2))*2^(1/2)*((x^2+2)/(x^2+1))^(1/2)/(x^4+3*x^2+2)^(1/
2)+2945/21*(x^2+1)^(3/2)*(1/(x^2+1))^(1/2)*EllipticF(x/(x^2+1)^(1/2),1/2*2^(1/2))*2^(1/2)*((x^2+2)/(x^2+1))^(1
/2)/(x^4+3*x^2+2)^(1/2)+1/21*x*(757*x^2+2608)*(x^4+3*x^2+2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 193, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1206, 1679, 1176, 1189, 1099, 1135} \[ \frac {125}{9} \left (x^4+3 x^2+2\right )^{3/2} x^3+\frac {275}{7} \left (x^4+3 x^2+2\right )^{3/2} x+\frac {1}{21} \left (757 x^2+2608\right ) \sqrt {x^4+3 x^2+2} x+\frac {577 \left (x^2+2\right ) x}{3 \sqrt {x^4+3 x^2+2}}+\frac {2945 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{21 \sqrt {x^4+3 x^2+2}}-\frac {577 \sqrt {2} \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{3 \sqrt {x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)^3*Sqrt[2 + 3*x^2 + x^4],x]

[Out]

(577*x*(2 + x^2))/(3*Sqrt[2 + 3*x^2 + x^4]) + (x*(2608 + 757*x^2)*Sqrt[2 + 3*x^2 + x^4])/21 + (275*x*(2 + 3*x^
2 + x^4)^(3/2))/7 + (125*x^3*(2 + 3*x^2 + x^4)^(3/2))/9 - (577*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*Ell
ipticE[ArcTan[x], 1/2])/(3*Sqrt[2 + 3*x^2 + x^4]) + (2945*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*Elliptic
F[ArcTan[x], 1/2])/(21*Sqrt[2 + 3*x^2 + x^4])

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(2*b*e*p + c*d*(4*p
+ 3) + c*e*(4*p + 1)*x^2)*(a + b*x^2 + c*x^4)^p)/(c*(4*p + 1)*(4*p + 3)), x] + Dist[(2*p)/(c*(4*p + 1)*(4*p +
3)), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1206

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(
a + b*x^2 + c*x^4)^(p + 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + b*x^2 + c*x^4)^p*Ex
pandToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2*p + 2*q - 1)*e^q*x^(2*q - 2) -
c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && IGtQ[q, 1]

Rule 1679

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Expon[Pq, x^2], e = Coeff[Pq, x^2,
 Expon[Pq, x^2]]}, Simp[(e*x^(2*q - 3)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(2*q + 4*p + 1)), x] + Dist[1/(c*(2*q +
 4*p + 1)), Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*q + 4*p + 1)*Pq - a*e*(2*q - 3)*x^(2*q - 4) - b*e*(2*q
+ 2*p - 1)*x^(2*q - 2) - c*e*(2*q + 4*p + 1)*x^(2*q), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2]
&& Expon[Pq, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] &&  !LtQ[p, -1]

Rubi steps

\begin {align*} \int \left (7+5 x^2\right )^3 \sqrt {2+3 x^2+x^4} \, dx &=\frac {125}{9} x^3 \left (2+3 x^2+x^4\right )^{3/2}+\frac {1}{9} \int \sqrt {2+3 x^2+x^4} \left (3087+5865 x^2+2475 x^4\right ) \, dx\\ &=\frac {275}{7} x \left (2+3 x^2+x^4\right )^{3/2}+\frac {125}{9} x^3 \left (2+3 x^2+x^4\right )^{3/2}+\frac {1}{63} \int \left (16659+11355 x^2\right ) \sqrt {2+3 x^2+x^4} \, dx\\ &=\frac {1}{21} x \left (2608+757 x^2\right ) \sqrt {2+3 x^2+x^4}+\frac {275}{7} x \left (2+3 x^2+x^4\right )^{3/2}+\frac {125}{9} x^3 \left (2+3 x^2+x^4\right )^{3/2}+\frac {1}{945} \int \frac {265050+181755 x^2}{\sqrt {2+3 x^2+x^4}} \, dx\\ &=\frac {1}{21} x \left (2608+757 x^2\right ) \sqrt {2+3 x^2+x^4}+\frac {275}{7} x \left (2+3 x^2+x^4\right )^{3/2}+\frac {125}{9} x^3 \left (2+3 x^2+x^4\right )^{3/2}+\frac {577}{3} \int \frac {x^2}{\sqrt {2+3 x^2+x^4}} \, dx+\frac {5890}{21} \int \frac {1}{\sqrt {2+3 x^2+x^4}} \, dx\\ &=\frac {577 x \left (2+x^2\right )}{3 \sqrt {2+3 x^2+x^4}}+\frac {1}{21} x \left (2608+757 x^2\right ) \sqrt {2+3 x^2+x^4}+\frac {275}{7} x \left (2+3 x^2+x^4\right )^{3/2}+\frac {125}{9} x^3 \left (2+3 x^2+x^4\right )^{3/2}-\frac {577 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+x^2}{1+x^2}} E\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{3 \sqrt {2+3 x^2+x^4}}+\frac {2945 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac {1}{2}\right )}{21 \sqrt {2+3 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 119, normalized size = 0.62 \[ \frac {875 x^{11}+7725 x^9+28496 x^7+57312 x^5+61214 x^3-5553 i \sqrt {x^2+1} \sqrt {x^2+2} F\left (\left .i \sinh ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |2\right )-12117 i \sqrt {x^2+1} \sqrt {x^2+2} E\left (\left .i \sinh ^{-1}\left (\frac {x}{\sqrt {2}}\right )\right |2\right )+25548 x}{63 \sqrt {x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(7 + 5*x^2)^3*Sqrt[2 + 3*x^2 + x^4],x]

[Out]

(25548*x + 61214*x^3 + 57312*x^5 + 28496*x^7 + 7725*x^9 + 875*x^11 - (12117*I)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*Ell
ipticE[I*ArcSinh[x/Sqrt[2]], 2] - (5553*I)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*EllipticF[I*ArcSinh[x/Sqrt[2]], 2])/(63
*Sqrt[2 + 3*x^2 + x^4])

________________________________________________________________________________________

fricas [F]  time = 0.72, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (125 \, x^{6} + 525 \, x^{4} + 735 \, x^{2} + 343\right )} \sqrt {x^{4} + 3 \, x^{2} + 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral((125*x^6 + 525*x^4 + 735*x^2 + 343)*sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{4} + 3 \, x^{2} + 2} {\left (5 \, x^{2} + 7\right )}^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 2)*(5*x^2 + 7)^3, x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 172, normalized size = 0.89 \[ \frac {125 \sqrt {x^{4}+3 x^{2}+2}\, x^{7}}{9}+\frac {1700 \sqrt {x^{4}+3 x^{2}+2}\, x^{5}}{21}+\frac {11446 \sqrt {x^{4}+3 x^{2}+2}\, x^{3}}{63}+\frac {4258 \sqrt {x^{4}+3 x^{2}+2}\, x}{21}-\frac {2945 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, \EllipticF \left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )}{21 \sqrt {x^{4}+3 x^{2}+2}}+\frac {577 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (-\EllipticE \left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )+\EllipticF \left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )\right )}{6 \sqrt {x^{4}+3 x^{2}+2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)^3*(x^4+3*x^2+2)^(1/2),x)

[Out]

125/9*x^7*(x^4+3*x^2+2)^(1/2)+1700/21*x^5*(x^4+3*x^2+2)^(1/2)+11446/63*x^3*(x^4+3*x^2+2)^(1/2)+4258/21*x*(x^4+
3*x^2+2)^(1/2)-2945/21*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticF(1/2*I*2^(1/2)*x,2
^(1/2))+577/6*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*(EllipticF(1/2*I*2^(1/2)*x,2^(1/2))-
EllipticE(1/2*I*2^(1/2)*x,2^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{4} + 3 \, x^{2} + 2} {\left (5 \, x^{2} + 7\right )}^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 2)*(5*x^2 + 7)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (5\,x^2+7\right )}^3\,\sqrt {x^4+3\,x^2+2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2 + 7)^3*(3*x^2 + x^4 + 2)^(1/2),x)

[Out]

int((5*x^2 + 7)^3*(3*x^2 + x^4 + 2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {\left (x^{2} + 1\right ) \left (x^{2} + 2\right )} \left (5 x^{2} + 7\right )^{3}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)**3*(x**4+3*x**2+2)**(1/2),x)

[Out]

Integral(sqrt((x**2 + 1)*(x**2 + 2))*(5*x**2 + 7)**3, x)

________________________________________________________________________________________